Uvinul® light stabilizers

<table>
<thead>
<tr>
<th>range</th>
<th>Uvinul® 3008</th>
<th>benzophenone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uvinul® 3026</td>
<td>benzotriazole</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 3027</td>
<td>benzotriazole</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 3028</td>
<td>benzotriazole</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 3029</td>
<td>benzotriazole</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 3030</td>
<td>cyanoacrylate</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 3033 P</td>
<td>benzotriazole</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 3034</td>
<td>benzotriazole</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 3035</td>
<td>cyanoacrylate</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 3039</td>
<td>cyanoacrylate</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 3434 C</td>
<td>UV absorber, HALS, antioxidant (blend)</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 4050 H</td>
<td>sterically hindered amine, monomeric</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 4077 H</td>
<td>sterically hindered amine, monomeric</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 4092 H</td>
<td>sterically hindered amine, monomeric</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 5050 H</td>
<td>sterically hindered amine, oligomeric</td>
</tr>
<tr>
<td></td>
<td>Uvinul® 5062 H</td>
<td>sterically hindered amine, oligomeric</td>
</tr>
</tbody>
</table>
Uvinul® 3008

chemical class
benzophenone

chemical name
2-hydroxy-4-octyloxybenzophenone

CAS number
1843-05-6

molecular structure

![Molecular Structure](image)

molecular mass
326 g/mol

physical form
yellowish powder

melting point
48–49 °C (118–120 °F)

density (20 °C [68 °F])
1.16 g/cm³

absorbance spectrum
(0.2 g/l in acetonitrile, d = 1 mm)

![Absorbance Spectrum](image)

solubility
(20 °C [68 °F], % m/m)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetone</td>
<td>43</td>
</tr>
<tr>
<td>chloroform</td>
<td>61</td>
</tr>
<tr>
<td>ethanol</td>
<td>4</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>44</td>
</tr>
<tr>
<td>n-hexane</td>
<td>12</td>
</tr>
<tr>
<td>methanol</td>
<td>2</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>67</td>
</tr>
<tr>
<td>toluene</td>
<td>> 50</td>
</tr>
<tr>
<td>water</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

application
The main applications are LLDPE und LDPE/EVA-films as well as PVC and HDPE applications. In polyolefins it is recommended to combine Uvinul® 3008 with a HALS.
Uvinul® 3026

chemical class
benzotriazole

chemical name
6-tert-butyl-2-(5-chloro-2H-benzotriazole-2-yl)-4-methylphenol

CAS number
3896-11-5

molecular structure

![Molecular Structure](image)

molecular mass
316 g/mol

physical form
yellowish powder

melting point
138–141 °C (280–286 °F)

density (20 °C [68 °F])
1.32 g/cm³

absorbance spectrum
(0.2 g/l in acetonitrile, d = 1 mm)

![Absorbance Spectrum](image)

solubility
(20 °C [68 °F], % m/m)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>% m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetone</td>
<td>1</td>
</tr>
<tr>
<td>chloroform</td>
<td>11</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>2</td>
</tr>
<tr>
<td>n-hexane</td>
<td>1</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>9</td>
</tr>
<tr>
<td>methanol</td>
<td>0.1</td>
</tr>
</tbody>
</table>

application
It is recommended to combine Uvinul® 3026 with a HALS when used in polyolefins. It can also be used in polyester, PMMA and RIM-PU.
Uvinul® 3027

chemical class
benzotriazole

chemical name
2,4-di-tert-butyl-6-(5-chloro-2H-benzotriazole-2-yl)-phenol

CAS number
3864-99-1

molecular structure

![Molecular Structure](image)

molecular mass
358 g/mol

physical form
yellowish powder

melting point
154–157 °C (309–315 °F)

density (20 °C [68 °F])
1.26 g/cm³

absorbance spectrum
(0.2 g/l in acetonitrile, d = 1 mm)

![Absorbance Spectrum](image)

solubility
(20 °C [68 °F], % m/m)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>% m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetone</td>
<td>1</td>
</tr>
<tr>
<td>benzene</td>
<td>16</td>
</tr>
<tr>
<td>chloroform</td>
<td>19</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>5</td>
</tr>
<tr>
<td>n-hexane</td>
<td>4</td>
</tr>
<tr>
<td>methanol</td>
<td>< 0.1</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>17</td>
</tr>
<tr>
<td>water</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

application
Uvinul® 3027 is used in polyolefins, polystyrenes, ABS, PMMA, RIM-PU and polyesters. It can also be used in optical applications requiring radiation of greater wavelength to be absorbed.
Uvinul® 3028

chemical class
benzotriazole

chemical name
2-(2H-benzotriazole-2-yl)-4,6-di-tert-pentylphenol

CAS number
25973-55-1

molecular structure

![Molecular structure of Uvinul® 3028]

molecular mass
352 g/mol

physical form
yellowish powder

melting point
80–88 °C (176–190 °F)

density (20 °C [68 °F])
1.17 g/cm³

absorbance spectrum
(0.2 g/l in acetonitrile, d = 1 mm)

![Absorbance spectrum of Uvinul® 3028]

solubility
(20 °C [68 °F], % m/m)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>% m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>6</td>
</tr>
<tr>
<td>Benzene</td>
<td>39</td>
</tr>
<tr>
<td>Chloroform</td>
<td>44</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>15</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>16</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>16</td>
</tr>
<tr>
<td>Methanol</td>
<td>0.4</td>
</tr>
<tr>
<td>Water</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

application
Uvinul® 3028 is used in polyolefins, PS, ABS, POM, PMMA, PA and PUR.
Uvinul® 3029

chemical class
benzotriazole

chemical name
2-(2H-benzotriazole-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol

CAS number
3147-75-9

molecular structure

![Molecular Structure](image)

molecular mass
323 g/mol

physical form
yellowish powder

melting point
103–105 °C (217–221 °F)

density
(20 °C [68 °F])
1.18 g/cm³

absorbance spectrum
(0.2 g/l in acetonitrile, d = 1 mm)

![Absorbance Spectrum](image)

solubility
(20 °C [68 °F], % m/m)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetone</td>
<td>9</td>
</tr>
<tr>
<td>benzene</td>
<td>32</td>
</tr>
<tr>
<td>chloroform</td>
<td>37</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>15</td>
</tr>
<tr>
<td>n-hexane</td>
<td>6</td>
</tr>
<tr>
<td>methanol</td>
<td>0.6</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>38</td>
</tr>
<tr>
<td>water</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

application
Uvinul® 3029 is particularly suitable for the protection of polycarbonates.
Uvinul® 3030

chemical class
cyanoacrylate

chemical name
1,3-bis-[2’-cyano-3’,3’-diphenylacryloyloxy]-2,2-bis-[[2’-cyano-3’,3’-diphenylacryloyloxy]methyl]-propane

CAS number
178671-58-4

molecular structure

![Molecular Structure](image)

molecular mass
1,061 g/mol

physical form
white crystalline powder

melting point
175–178 °C (347–352 °F)

density (20 °C [68 °F])
1.2 g/cm³

absorbance spectrum
(0.2 g/l in acetonitrile, d = 1 mm)

![Absorbance Spectrum](image)

solubility
(20 °C [68 °F], % m/m)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>% m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>butanone</td>
<td>0.2</td>
</tr>
<tr>
<td>methanol</td>
<td>< 0.01</td>
</tr>
<tr>
<td>methyl ethyl ketone</td>
<td>7</td>
</tr>
<tr>
<td>toluene</td>
<td>0.8</td>
</tr>
<tr>
<td>water</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

application
Uvinul® 3030 is a UV absorber having maximal thermal stability and minimal volatility. Therefore, it can be used to stabilize polymers with high extrusion temperatures. Besides PA and PET, Uvinul® 3030 is especially suitable for stabilizing polycarbonates due to the good compatibility with the production process and excellent stabilizing effect.
Uvinul® 3033 P

chemical class
benzotriazole

chemical name
2-(2H-benzotriazole-2-yl)-4-methylphenol

CAS number
2440-22-4

molecular structure
![Molecular Structure](image_url)

molecular mass
225 g/mol

physical form
yellowish powder

melting point
128–132 °C (262–270 °F)

density (20 °C [68 °F])
1.38 g/cm³

absorbance spectrum
(0.2 g/l in acetonitrile, d = 1 mm)

<table>
<thead>
<tr>
<th>Solubility</th>
<th>Acetone</th>
<th>Benzene</th>
<th>Chloroform</th>
<th>Cyclohexane</th>
<th>Ethyl Acetate</th>
<th>n-Hexane</th>
<th>Methanol</th>
<th>Methylene Chloride</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>% m/m (20 °C [68 °F])</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>1</td>
<td>3.5</td>
<td>0.8</td>
<td>0.2</td>
<td>16</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

application
Uvinul® 3033 P can be used in various polymers, e.g., in PVC, PS, SAN, ASA, ABS, PET, PMMA and PUR.
Uvinul® 3034

chemical class
benzotriazole

chemical name
2-(2H-benzotriazole-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol

CAS number
70321-86-7

molecular structure

![Molecular Structure](image)

molecular mass
448 g/mol

physical form
yellowish powder

melting point
137–141 °C (279–286 °F)

density (20 °C [68 °F])
1.22 g/cm³

absorbance spectrum
(0.2 g/l in acetonitrile, d = 1 mm)

![Absorbance Spectrum](image)

solubility
(20 °C [68 °F], % m/m)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetone</td>
<td>2</td>
</tr>
<tr>
<td>chloroform</td>
<td>35</td>
</tr>
<tr>
<td>cyclohexane</td>
<td>5</td>
</tr>
<tr>
<td>ethanol</td>
<td>0.3</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>4</td>
</tr>
<tr>
<td>n-hexane</td>
<td>0.6</td>
</tr>
<tr>
<td>methanol</td>
<td>< 0.1</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>34</td>
</tr>
<tr>
<td>toluene</td>
<td>20</td>
</tr>
<tr>
<td>water</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

application
Uvinul® 3034 suitable for application in PET, PA, PC, PMMA, TPU as well as PP films.
Uvinul® 3035

chemical class
cyanoacrylate

chemical name
ethyl-2-cyano-3,3-diphenylacrylate

CAS number
5232-99-5

molecular structure

![Molecular structure of Uvinul® 3035]

molecular mass
277 g/mol

physical form
white crystalline powder

melting point
95–100 °C (203–212 °F)

density (20 °C [68 °F])
1.16 g/cm³

absorbance spectrum
(0.2 g/l in acetonitrile, d = 1 mm)

![Absorbance spectrum of Uvinul® 3035]

solubility
(20 °C [68 °F], % m/m)
- ethyl acetate: 35
- methanol: 7
- methyl ethyl ketone: 27
- toluene: 31
- water: < 0.01

application
Uvinul® 3035 is particularly suitable for the stabilization of PVC, PA and ABS. It can also be used in PS, polyesters and PUR.
Uvinul® 3039

- **Chemical Class**: cyanoacrylate
- **Chemical Name**: (2-ethylhexyl)-2-cyano-3,3-diphenylacrylate
- **CAS Number**: 6197-30-4

Molecular Structure

![Molecular Structure of Uvinul® 3039](image)

- **Molecular Mass**: 361 g/mol
- **Physical Form**: slightly yellowish clear liquid
- **Melting Point**: –8 °C (18 °F)
- **Density (20 °C [68 °F])**: 1.05 g/cm³

Absorbance Spectrum

(0.2 g/l in acetonitrile, d = 1 mm)

![Absorbance Spectrum](image)

Miscibility

(20 °C [68 °F], % m/m)

<table>
<thead>
<tr>
<th>Miscible</th>
<th>Not Miscible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl acetate</td>
<td>Miscible</td>
</tr>
<tr>
<td>Methanol</td>
<td>Miscible</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>Miscible</td>
</tr>
<tr>
<td>Toluene</td>
<td>Miscible</td>
</tr>
<tr>
<td>Water</td>
<td>Not Miscible</td>
</tr>
</tbody>
</table>

Uvinul® 3039 is compatible with all common plasticizers.

Application

Due to its good compatibility with plasticizers, Uvinul® 3039 is particularly suitable for the stabilization of PVC-p and PVC plastisols. It can also be used in PUR, polyesters and PMMA.
Uvinul® 3434 C

chemical class
liquid blend consisting of UV absorber, HALS and antioxidant

physical form
light yellowish liquid

boiling point
> 150 °C (302 °F)

density (20 °C [68 °F])
1.00 g/cm³

miscibility (20 °C [68 °F], % m/m)
- ethyl acetate: miscible
- methanol: miscible
- methyl ethyl ketone: miscible
- toluene: miscible
- water: not miscible

application
Uvinul® 3434 C is a blend developed in particular for application in PUR where it exhibits an excellent stabilizing effect. Being liquid it is easily incorporated into PUR systems.
Uvinul® 4050 H

chemical class
sterically hindered amine, monomeric

chemical name
N,N'-bisformyl-N,N'-bis-(2,2,6,6-tetramethyl-4-piperidinyl)-hexamethylenediamine

CAS number
124172-53-8

molecular structure

![Molecular structure of Uvinul® 4050 H](image)

molecular mass
450 g/mol

physical form
white crystalline powder

melting point
155–160 °C (311–320 °F)

density (20 °C [68 °F])
1.08 g/cm³

solubility (20 °C [68 °F], % m/m)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>% m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetone</td>
<td>0.3</td>
</tr>
<tr>
<td>chloroform</td>
<td>6</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>0.3</td>
</tr>
<tr>
<td>n-hexane</td>
<td>< 0.01</td>
</tr>
<tr>
<td>methanol</td>
<td>11</td>
</tr>
<tr>
<td>methyl ethyl ketone</td>
<td>6</td>
</tr>
<tr>
<td>water</td>
<td>0.5</td>
</tr>
</tbody>
</table>

application
Uvinul® 4050 H is suitable for the stabilization of polyolefins, particularly in thick-walled PP molding and PP fibers, as well as ABS, PA and polyesters. Combined with UV absorbers it is also used in PS, ABS and PA.
Uvinul® 4077 H

chemical class
sterically hindered amine, monomeric

chemical name
bis-(2,2,6,6-tetramethyl-4-piperidyl)-sebacate

CAS number
52829-07-9

molecular structure

![Molecular Structure](attachment://molecular_structure.png)

molecular mass
481 g/mol

physical form
white crystalline powder

melting point
81–85 °C (178–185 °F)

density (20 °C [68 °F])
1.05 g/cm³

solubility
(20 °C [68 °F], % m/m)
<table>
<thead>
<tr>
<th>Solvent</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetone</td>
<td>19</td>
</tr>
<tr>
<td>chloroform</td>
<td>45</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>24</td>
</tr>
<tr>
<td>n-hexane</td>
<td>5</td>
</tr>
<tr>
<td>methanol</td>
<td>38</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>56</td>
</tr>
<tr>
<td>water</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

application
Uvinul® 4077 H is suitable for the stabilization of polyolefins, particularly in PP molding. Combined with UV absorbers it is also used in PA, SAN and PS.
Uvinul® 4092 H

chemical class
sterically hindered amine, monomeric

chemical name
bis-(1,2,2,6,6-pentamethyl-4-piperidyl)-sebacate + methyl-(1,2,2,6,6-pentamethyl-4-piperidyl)-sebacate

CAS number
41556-26-7 + 82919-37-7

molecular structure

![Molecular structure of Uvinul® 4092 H](image)

molecular mass
509 g/mol + 370 g/mol

physical form
slightly yellowish clear liquid

density (20 °C [68 °F])
0.99 g/cm³

solubility (20 °C [68 °F], % m/m)
- acetone: > 50
- chloroform: > 50
- cyclohexane: > 50
- ethanol: > 50
- ethyl acetate: > 50
- n-hexane: > 50
- methanol: > 50
- methylene chloride: > 50
- toluene: > 50
- water: < 0.01

application
Uvinul® 4092 H is a liquid light stabilizer used in PVC-p, PUR and styrenics as well as in liquid colors.
Uvinul® 5050 H

chemical class
sterically hindered amine, oligomeric

CAS number
152261-33-1

molecular structure

![Molecular Structure](image)

molecular mass
3,000–4,000 g/mol

physical form
yellowish pellets

drop point
> 110 °C (230 °F)

density (20 °C [68 °F])
0.99 g/cm³ ± 5 %

solubility (20 °C [68 °F], % m/m)
- tetrahydrofuran: > 40
- toluene: > 40
- water: < 0.01

application
Uvinul® 5050 H can be used in all polyolefins. It is particularly suitable for water-cooled tape production, films containing PPA and TiO₂, and agricultural applications. It can also be used in PVC, PA and TPU as well as in ABS and PET.

processing
Uvinul® 5050 H is supplied in pellet form. In order to achieve a homogenous distribution it is necessary to follow this temperature program in batch production:

<table>
<thead>
<tr>
<th></th>
<th>PP</th>
<th>PE (HD and LD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>feeding zone</td>
<td>< 50 °C (122 °F)</td>
<td>< 50 °C (122 °F)</td>
</tr>
<tr>
<td>heating zone 1</td>
<td>80 °C (176 °F)</td>
<td>80 °C (176 °F)</td>
</tr>
<tr>
<td>kneading zone</td>
<td>200–240 °C (392–464 °F)</td>
<td>180–220 °C (356–428 °F)</td>
</tr>
</tbody>
</table>

This temperature program yields best homogenization at high throughput.
Uvinul® 5062 H

chemical class
sterically hindered amine, oligomeric

CAS number
65447-77-0

molecular structure

![Molecular structure of Uvinul® 5062 H](image)

molecular mass
3,100–4,000 g/mol

physical form
white crystalline powder

melting point
50–70 °C (68–158 °F)

density
(20 °C [68 °F]) 1.22 g/cm³

solubility
(20 °C [68 °F], % m/m)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>% m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetone</td>
<td>4</td>
</tr>
<tr>
<td>chloroform</td>
<td>> 40</td>
</tr>
<tr>
<td>ethanol</td>
<td>0.08</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>3</td>
</tr>
<tr>
<td>n-hexane</td>
<td>< 0.01</td>
</tr>
<tr>
<td>methanol</td>
<td>0.05</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>> 40</td>
</tr>
<tr>
<td>toluene</td>
<td>15</td>
</tr>
<tr>
<td>water</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

application
Uvinul® 5062 H can be used as a stabilizer for polyolefins and PA.
Safety

When handling these products, advice and information given in the safety data sheet must be complied with. Further, protective and workplace hygiene measures adequate for handling chemicals must be observed.

Note

The data contained in this publication are based on our current knowledge and experience. In view of the many factors that may affect processing and application of our product, these data do not relieve processors from carrying out their own investigations and tests; neither do these data imply any guarantee of certain properties, nor the suitability of the product for a specific purpose. Any descriptions, drawings, photographs, data, proportions, weights, etc. given herein may change without prior information and do not constitute the agreed contractual quality of the product. It is the responsibility of the recipient of our products to ensure that any proprietary rights and existing laws and legislation are observed.